Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(4): 3518-3538, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35108011

ABSTRACT

The identification of agonists of the stimulator of interferon genes (STING) pathway has been an area of intense research due to their potential to enhance innate immune response and tumor immunogenicity in the context of immuno-oncology therapy. Initial efforts to identify STING agonists focused on the modification of 2',3'-cGAMP (1) (an endogenous STING activator ligand) and other closely related cyclic dinucleotides (CDNs). While these efforts have successfully identified novel CDNs that have progressed into the clinic, their utility is currently limited to patients with solid tumors that STING agonists can be delivered to intratumorally. Herein, we report the discovery of a unique class of non-nucleotide small-molecule STING agonists that demonstrate antitumor activity when dosed intratumorally in a syngeneic mouse model.


Subject(s)
Membrane Proteins/agonists , Animals , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP/pharmacology , Cyclic GMP/chemistry , Cyclic GMP/pharmacology , Female , Humans , Immunity, Innate/drug effects , Immunotherapy/methods , Membrane Proteins/chemistry , Mice , Mice, Inbred BALB C , Models, Molecular , Neoplasms/immunology , Signal Transduction/drug effects , Small Molecule Libraries
2.
PLoS One ; 14(3): e0212670, 2019.
Article in English | MEDLINE | ID: mdl-30913212

ABSTRACT

Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.


Subject(s)
Immunity, Cellular , Immunologic Surveillance , Lymphocytes/immunology , Neoplasms, Experimental/immunology , Protein Serine-Threonine Kinases/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Lymphocytes/pathology , Mice , Mice, Mutant Strains , Neoplasms, Experimental/genetics , Point Mutation , Protein Serine-Threonine Kinases/genetics , Tumor Microenvironment/genetics
3.
BMC Physiol ; 7: 13, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-18070349

ABSTRACT

BACKGROUND: Tumor necrosis factor alpha (TNFalpha) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFalpha (hTNFalpha) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFalpha transgenic mouse line. RESULTS: In addition to arthritis, these hTNFalpha transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFalpha. CONCLUSION: These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFalpha, a condition mimicking that observed in a number of human pathological conditions.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Phenotype , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Animals , Female , Gene Expression , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...